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Iterated function system and diffusion in the presence of disorder and traps
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The escape probability £, from a site = of a one-dimensional disordered lattice with trapping is
treated as a discrete dynamical evolution by random iterations over nonlinear maps parametrized
by the right and left jump probabilities. The invariant measure of the dynamics is found to be a
multifractal. However the measure becomes uniform over the support when the disorder becomes
weak for any nonzero trapping probability. Possible implications of our findings to diffusion processes

are brought out briefly.
PACS number(s): 05.40.+j, 05.60.4+w, 61.43.Hv

Diffusion in the presence of disorder and trapping has
become by now a classic field. This is mainly because
the problem per se is mathematically interesting and is
well posed; also it has a tremendous potential for a wide
range of applications which include migrations of optical
excitations [1], polymer physics [2], and diffusion-limited
binary reactions [3]. See, e.g., [4] for an exhaustive re-
view.

The standard approach to this class of problems is
to write down a second order master equation for the
probability of the particle to be at a lattice site at a
given time, and solve it employing analytical or numer-
ical techniques, see, for example, [5]. An alternate ap-
proach, based on the first passage time (FPT) formula-
tion, has attracted growing attention in the recent times
[6-10]. This approach has an advantage in that the mas-
ter equation is first order to start with. All the transport
properties of the system can also be calculated from the
first passage time formulation.

Employing FPT formulation for the Sinai model [11]
it was recently shown that the distribution of the mean
FPT over the disorder exhibits interesting multifractal
scaling [8]. Also the probability to escape from one site
of the lattice to the next was found to have self-similar
fluctuations [9,10]. The Sinai model however, is a highly
idealized, albeit interesting, mathematical model, and
whose link to physical reality appears to be rather ab-
stract.

In this work we shall consider a more realistic model for
diffusion where a particle diffuses by overcoming random
barriers but can also be trapped at various sites with site
dependent random probabilities [12]. The main charac-
teristic of this class of models is that the total probability
(called the survival probability) is not a conserved quan-
tity. It has been shown that the survival probability is an
erratical descreasing function of time and leads to inter-
esting and unexpected behavior like enhanced diffusion,

breaking of self-averaging and emergence of Lifshitz tails
[13].
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We shall show that this model, when disorder is strong
leads to self-similar fluctuations of the escape probabil-
ity, and these can be characterized employing multifrac-
tal formalisms. However this feature of multifractality
disappears when there is no trapping, whatever may be
the strength of disorder. More importantly, when the
strength of disorder goes to zero the multifractality dis-
appears even with arbitrary nonzero trapping probabil-
ity. Purely from methodological point of view, we con-
nect diffusion in a trapping environment to an iterated
function system [14]. Such a formulation, connecting ran-
dom walks and iterated function systems, was proposed
very recently in the context of a binary model for Sinai
disorder [9,10], where we have two maps for random it-
erations. Here we extend the formulation to problems of
diffusion on a disordered lattice in the presence of trap-
ping, where we have infinity of maps parametrized by the
jump probabilities which are chosen randomly from a well
specified distribution that models the disorder. We re-
strict our attention to a one-dimensional lattice since, as
is often the case [15], it contains all the essential charac-
teristics of the higher-dimensional systems. Furthermore
one-dimensional systems are amenable to relatively easy
analytical and numerical work.

_ Let us consider the master equation for the probability
Ggz.z+1(n) that a particle makes a first passage from a
site « to a site £ + 1 in n steps on a one-dimensional
lattice of length N. At each site z > 1 we shall indicate
by g, € [0,1/2] the probability for making a left jump
and by p, € [0,1/2] the probability of making a right
jump (see Fig. 1). The sojourn probability at site z is

Po . Py

FIG. 1. Definition of the hopping probabilities. At site =
the left jump probability is ¢, and the right jump probability
is p. The sojourn probability is S = y(1 — g= — p=) while
the trapping probability is T> = (1 — v)(1 — g= — p=) where
v € [0,1].
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given by (1 — ¢, — p) and the trapping probability is
(1 —=~v)(1 — g — pz). Here v is a parameter which can be
continuously tuned from 0 (trapping) to 1 (no trapping).

The master equation for G, »11(n) (z > 1) then reads:

G:c,:c+1 (n) = pm(sl,n + q:cém—l,m+1 (n - 1)
+Y(1 = ¢s = Pz)Gazt1(n — 1) (1)

with the boundary condition that site = —1 is perfectly
reflecting:

é0,1(n) = pod1,n +¥(1 — Po)éo,l(n -1) (2)
and that C:'m,mﬂ(n) = 0 for z < —1. We assume that
{¢zy =1, N —1; pg, £ =0, N — 1} constitute a set
of independent random variables identically distributed
in the range (0 — 1/2), and the common distribution is
given by
m(w) = 2172 (1 - B)wPO(w)6(1/2 — w) 3)

where w = ¢, p and 8 € [0,1). Here 6( ) is the usual
Heaviside function. This distribution is known to pro-
duce anomalous diffusion for strong disorder (8 — 1)
even with no trapping [5]. For 8 = 0, we find that the
distribution is uniform in the range zero to half. Thus 8
can be tuned from 0 (weak disorder) to 1 (strong disor-
der).

Equations (1) and (2) are readily solved employing gen-
erating function technique. We define

Zz Gomir(n) . (4)

Gz :n+1 z)

Upon the use of convolution theorem,

Go1,0+1(2) = Gom1,0(2) Gozt1(2) (5)
we obtain
2Pz
Gz::l: z) = 0
2+1(2) 1—v2(1 = gp — Ps) — 2¢2Go—1.2(2) ©)

for z > 1 and

Go.(z) = #}"_M , (7)

This solution has earlier been obtained in Ref. [6].

We are interested in the behavior of the escape prob-
ability, namely the total probability for the first passage
from z to = 4+ 1. This is given by

}: Gootr(n) . (8)

Using Eqgs. (6) and (7) it is immediately seen that the
escape probability satisfies the following one-dimensional
recursion:

€ = b
z = 5
1-— 7(1 — 4z _pm) - ngz-—-l

&'z—Gma:+1 Z—l)

z>1 (9)

with the initial condition

_ Do
§o = T-~(1=po) (10)

Equation (9) can be interpreted as a dynamical map for
a fixed p and ¢. In fact, since p and ¢ are random, the
evolution &y — &;... — €& — €z4+1 — ... proceeds by
random iteration over the maps parametrized by p and
q, which are chosen independently and randomly from
the disorder distribution give by Eq. (3) at each stage of
iteration. This constitutes an iterated function system,
see Barnsley [14].

It is immediately seen that when v = 1, which corre-
sponds to a lattice with no trapping Egs. (9) and (10)
lead to £, = 1, for all = regardless of the choice of {p., ¢ }-

Let us now consider the nonconserved case, for which
v is less than 1. For given values of ¢ and p the fixed
point of the map (9) is

gr= 1o =g-p)] = VL —7(1 g~ )] — 4pq]
2q

(11)

and it is stable. It lies (see Fig. 2) in the region delimited
by £* = 0 corresponding to p = 0, ¢ > 0 (only left jump)
and £* = p/[1 — v(1 — p)] corresponding to ¢ =0, p > 0
(only right jumps).

We now show that the escape probability exhibits self-
similar fluctuations and these can be characterized em-
ploying multifractal formalisms [16]. From numerical
point of view, it proves convenient to rescale £, in such
a way that the domain is the interval [0, 1]. To this end
we employ the standard rescaling:

E — Smin

gmax - £min - 6 ' (12)

0.8 — €x=$x—l ;
. 0.6 — p>q —
| = -
Iy L pP=q i
04 = -
| p<q |
0.2 —
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FIG. 2. The map € = f({z—-1) for p = 0.2, ¢ = 0.1,
p =gq = 0.15 and p = 0.1, ¢ = 0.2. Fixed points are the
intersections of the maps with the £, = £, line.
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We denote by p;(€), the fraction of the total number of
¢ values that belong to the ith interval of size e = 1/N.
Then the partition function is given by

N
2(Q,e) =) pl(e) (13)

=1

where the sum is taken over nonempty intervals only.
Here, in analogy with conventional statistical mechanics,
the partition function Z(Q,€) represents the total contri-
bution of the measures {p;(€),is = 1,... N}, each of which
goes to zero in the € — 0 limit. Here —co < Q < 4+
is a real parameter that highlights the contributions of
the different magnitude of the measure to the sum rep-
resented by the partition function. The way in which
the partition function scales with the dimension of the
ruler €, is governed by the following standard [16] scaling
ansatz [17],

Z(Q,e) R @ (14)

from which we obtain the scaling exponents as
- i Bl2(Qs )]
(@) = gl—% Ine ’ (15)

Figure 3 shows a log-log plot of Z(Q,€) versus ¢(= 1/N)
for N ranging from 10 to 3 x 10%. The linearity of the
curves establishes unambiguously the scaling ansatz (14).
From the scaling exponents we calculate the generalized
Renyi dimensions, given by D(Q) = 7(Q)/(Q — 1), for
Q@ # 1. Legendre transform of 7(Q), defined as

fla)=aQ -7(Q), (16a)

a= 157(Q) (16b)

e :
~100 i
—-15 —-10 -5 — 0

FIG. 3. Behavior of the partition function Z(Q,€) vs ein a
log-log plot for 8 = 0.3 and v = 0.99. Q varies from —5 (top
curve) to +10 (bottom curve) in units of 1 with Q # 1.
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FIG. 4. Plot of 7(Q) vs Q.

yields the spectrum of singularities denoted by f(a).
Figure 4 depicts the scaling exponents 7(Q). It is well
defined and exhibits clear change in slope, establishing
that the underlying measure is multifractal. Figure 5
depicts the spectrum of Renyi dimensions D(Q) for var-
ious strengths of disorder (3) and trapping (y). We ob-
serve that when the disorder is strong (8 — 1), D(Q)
remains the same for all values of v # 1. In other words,
the strength of trapping does not influence the fractal
measures of the escape probability, when the disorder in
the lattice is strong. However when the disorder is weak
(B — 0), the spectrum of Renyi dimensions changes from
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FIG. 5. Spectrum of the Renyi dimensions D(Q) vs Q.
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FIG. 6. The information dimension D(1) and the corre-
lation dimension D(2) as a function of the strength of the
disorder g3, for v = 0.

one trapping rate to the other. Also in the limit of 3 — 0,
the D(Q) curve becomes flat with unit intercept, for all
values of v # 1, implying that the measure is space fill-
ing. To capture in a simple fashion the dependence of the
fractal measure on the strength of disorder, we depict in
Fig. 6 the variation of the information dimension D(1)
and the correlation dimension D(2), as a function of 3
for a fixed value of v = 0. We find that both D(1) and
D(2) decrease with increasing strengths of disorder. We
plot in Fig. 7 the f-o curve. It is worthwhile noticing
that since the slope of 7(Q) for @ — —oo saturates at
unity, the side of f(a) for & > 1 does not exist.

A natural question that arises in this context relates
to the implications of our findings to the transport prop-
erties of the disordered systems. More specifically we ask
the question: Is there a connection between anomalous
diffusion and fractal fluctuations? For example we find
that when the disorder is strong (3 — 1), the escape
probability exhibits multifractal fluctuations for arbi-
trary nonzero trapping rate. For weak disorder (8 — 0),
the fluctuations become regular and are not multifractal
[18].
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FIG. 7. The spectrum of singularities for 8 = 0.7, v arbi-
trary and 8 = 0.3, v = 0.

It has been shown earlier [5] that this model of disorder
exhibits anomalous diffusion when 8 — 1. Also, when
the disorder is weak (3 — 0) there is no anomaly in the
diffusion process.

However it should be noted that in our analysis an
interplay of trapping and disorder is the one that leads to
fractal measures of fluctuations in the escape probability.

In view of the results presented here, we feel it would be
extremely interesting to extend the approaches of Ref. [5]
to the case where trapping is also present. Numerical and
analytical investigations in this direction are underway
and will be reported soon.
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